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Con\lolu‘l:ion -(:or monoidal co.{egor'\es

Civen o small monoidal Categortj (G,%,I), the

category of presheaves €:=[€°f, Set] inherits a
monoidal structure [Day 1970].

The tensor product is defined. via a convolution formula:
x,Yyet
p& g = j e(x) x g(y) x €(¢,x oY)

The unit is given by the representable ¢(-,1).



“The. convolution of convolution

ESthliShif\S that this indeed defines o monoidal

Structure is an exercise in the coend calculus. While not
pwticulmﬂg difficult for those versed in the necessary
manipulations, one can't help but think there must be

o s%mP\er way.

The key iS to spot that the tensor product in C is
h has a mapping out

defined. by o colimit, whic
universal property.

This indicates it may be helpful to consider the
construction multicategorically.



M\A\k’\ca’cegories

A rulticategory is like a category, but where
morphisms have Multiory domain.

Every (colox) monoidal category can be viewed as a
Mu\\:'\categomj, n which a Multiary Mor?hism \S Sive/\
by a rmorphism from o tensor product.

xl 1'\ x|@"°®xn

V .= U

Y Y
These are the (weally) representable multicategories.



Convolution, Mu\ticatesoricodlﬂ

Notural tronsformations in e

x,Yyet
j p(x) x gly) x€(-,xey) =
are in bijection with families of functions

p(x) X g(y)— r(xey)

noktwal In x,ge@. Sim’u\au'lg, naktwcal transformations

6('—01) < [
are in bijection with elements of F\I).



Convolution, Multicategorically

7

G is eg/uippeo\ with the structure of a Mu\tica’(eaora,
(:or whichh o multimorphism PrsfPa— " 1S a famihj

(X)) x g (X)X - X (X} = F(X, @ X2 8-+ & xn)

notural in each X €€,

It is very easy to show this forms o Mu\ticategor v

that this multicategory 1S representable (hence arises
from a monoidal ca{egorg) follows from cocompleteness.



Ccv\vo\u\:ion VIO e.xPor\e,nt’\aution

In ‘Fac,t, this multicategory hos a Wniversal properta'.
viewin (C,®,I) and (Set, x,T) as representab\e
multicategories, the Mu\ticate30r3 structure on €

IS PreciseJ:j the ex?onentiod

op
Soe,tc

in the category of multicategories [Pisani 2014]

Moreover, the exponentioble multicategories are precisely
the promonoidal categories [Pisani 2014]



Multi cate.sor'\ca\ conseguences

An adwomtage of twhe Mu\tiCatesorica\ perspective 'S
that it Simf\ifies the study of Structures internal to

the convolution monoidal structure.

For instance, & mMonoid N a multicategory M is

equivalent to o functor 1 — J of muiticategornes.
Hence, a monoid n E S a functor ]_-—-—’Setc,?
thus a functor €°"—> Set of multicategories, i.e. a lox

mMmonoidal {b\ncto r.

The fact that lox monoidal functors are monoids therefore
essentially becomes a triviality.



T’\o’civat'non



Frovv\ monorvdal catesories to double cate.gories

Monoidal categories are examples of much richer
structures: double categories. While it is often said that
monoidal categories are Simply one-object bicatesories ,
n Pmctice , i1t is tapica\\lj more useful to view monoidal
categories &S double categories with one object and. one
tia\n\: MOPPhiSM.

This is because, just as we typically view monoidal

Categories 0S Categories eguipped withh Structure, so too
Moy we view o double categorg oS Sstructure on o categorg;

conversely, bicategories do not have underlying categories.



Double Catesories

A Jdouble categond 1S O Catesors-\ike structure with
two Kinds of morphism (tiaht and loose), and cells

fil\ing squares: \ 0 .
—t+— .
Bé———l——-B'
9
Cells can be composed in both the tight direction, and

the loose direction, but the latter is merely associative
oand unital up to coherent isomorphism [C.mmo\'.g& Paré \qqq].

loose



Composit'\ov\ n double ca\tesories

Be——B'e——+—8B Be—-+—B”
2 2 709’
P ' P '
A&——A A —— A
Fl @ LF .
! v
3ce-—'-—-—C' C e——C"'



_W\e. W\o\erly ._93 c.ategories

A double category € has two associated categories:

. €, is the category whose objects are those of C,
ond whose morphisms are the tight rorphisms.

e C, is the cotegory whose objects are the

\OOSe Morph\SMS N C (Nith arbitrarg domain

and codomain)  and. whose morphisms are Cells:

Aa—-ﬁ——-A'

fl o | £

B(-_-n—B'

2



Span

A gro{:otap'\ca\ example of a double category 1S Sean,
whose und\er\gins catesory of objects and tisht rMorphisrms
IS _Se{;, whose loose MorF\r\'\SMS are spons of se,l;-g, ond

whose cells are morphisms of spans.

P
Ae——A" ALPP_')A'
fl ¢ F = fl e LF
Be——8 Be—Q —8



Dist

Another motivating example 1S Dist, whose unde,r\&ins

cotegory of objects and tight rorphisms is Cat, whose
loose mMorphismg X & Y oare distributors, i.e. functors
X Y —> Set, and whose cells are natural

troms.pormations .

P, op P
A——A A" x A — Set
fl o lf I Y e
Bé———l——-B BOfth Z



Convo\ut'\on :&r doubl\e c,atesor;es
It is often illu\mimtiv\j to senera\ise. Phev\omena from
mMmonoidal categorg theory to double category theory.
Wln5 Mi&\r\t we be intefested In ge,mrou\isins convolution in
particular to double categories?

There are Several instances of constructions in the

literoture that are clearly reminiscent of convolution,
but whose relation is mysterious. We should like

to see them os instances of o single construction,
l:here\o5 clau‘ifﬂing the bis Picture,



Case .s’cuxo\3 _1_

Give.n o bicateaorﬂ 6, We con &rm a New
bicategory @, the local cocompletion of BB [Dag 1973]

whose hom-categoriel are defined by
_

B(X,Y) = B(X,Y)
and whose composition is defined via a convolution
formula. £eB,2), geB(X,Y)
96 g := hi— j p(f) AC), xB(X,2)(h,fo9)



Case .s’cuo\3 2,_

Recently, Behr, Mellies & Zeilberger showed that,
for each small double category €, the presheaf
categorg E. on €, (the catesorg of loose Morehisms
and cells in €) inherits a colox monoidal structuce,
where the tensor Proo\uct is defined viaa a convolution

-ﬁvmu\a [ZOZ'S] :
-F’ 3 € Cz

p8 g := h""j p(£) x g(g) x C(h, foy)



_W\e. Yoneda e.Mbedo\ing For double cateﬁories

We May Fruitfu\\a study o category € b3 embcddins
it into the category of presheaves via the Yoneda

embedding e

If we want to use a similar tedanigue to study a
double category C, we are faced with two guestions:

e« What 1S a presheaF on a double catesorﬂ?
o What structure do Presheawe_s on a double

Ca{:eaorﬂ form?



Case .s’cuo\3 E_

Motivated by such guestions, Paré showed. [2011]
that, for any double cotegory C, the contravariant
Epan-valued lox Functors therefrom assemble, not
into a double Categorg but a virtual double category

u_ax(¢09t, $pom)
that ?\oujs the role of the presheaf construction

for C, in an appropriate sense.



Unification



Victual double co.te.sories

To understand Convolution for monoidal categories,
we moved to the more general context of

Multicategories, To understand Convolution for
double Catesories, we must move to an qnalosou\slg

more Seneral context.

Just as monoidal categories mMay be viewed as
One-object double categories, Multicategories may
be viewed as One-object virtual double categories.



Virtum\ double Cad:.esories

A virtual double Category (vDC) is o Structure like

& double category, except that we drop the
assumption that loose mMorphisms May be composed,

and instead permit mMuitiary cells  [Bueroni 1971]:

o P2 o
Ae—+—A—+— " A
£l ¢p VF
B&e— —+—8B

2



Composition in a VDC

Just as in o double Category, the tight morphisms
assemble into o category. Furthermore, we have identity
ano COMPOSi{:e cells as follows:

-

e

W = |

o b—t— -

P

okt o &t o —t— o . et o bt o bt o e
~L P, . ¢, |
v et * ——t— — l (‘P"(P‘L):\P l
| v |




B__e.PreSento\bilitS
Eve.ra double Categors May Y IRVITINT . G K \
VDC, in which the Multiarg cells are the cells
whose domain is & composite of loose mMorphisms,
Such VDCs are called representable.

e, Pa PO - O fa
o &=t ¢ —t— - o s o
l ¢ | = 1 ¢ |
1 1

functors between representable VDCs correSpond
to lox functors between double categories

[DPP 200¢].



Ccvwo\u\:ion VIO e.xponent’\ad:ion

Theorem
Every representable vDC (i.e. double category)

1S ex?onentiable..




Ccv\vo\u\:ion VIO e.xPor\e,nt’\aution
Theorem
Every representable vDC (i.e. double category)

1S exPonent\’able.

Civen VDCs € and ID the uno\erlynnﬂ category
of the exponential D¢ i the functor category
[d:o:ﬂ)o], while a loose MorFMSM (K \ SMPV\

MOf‘P\niSM: C,«— C,—»C,
! [
Do~ D, D,



Case .stu\o\5 _1_

Evera bicategonj R Moy be viewed as o double

Category With no nontrivial tight rmorphisms, In
Part‘\cu\a\r, bicategories are exponentiable VDCs.

&)positicﬁ

co

Tlr\e F‘A“ Sub -VDC O-F $?an8 SPOW\'\CCL by the
objects of B, i.e. the reeresentable Presheawes,

IS aga'm o bicateaorj, ond exhibits the local
c,ocoMPletion of B,



Case stud.3 2._

Denote by "M the one-object VDC associated
to a Multicatesorg M.

Propositien

opt
Civen o dwouble category C, (7-"'5?-':)0: IS a
weoakly representable r\:\:\ticatesonj, whose
U\no\erlging Category is €, and which exhibits
the colax mMonoidal structure of [BMZ 2023).



The VDC of monads

Recall that a monoid in the convolution mMmonoidal
structure on € g orecisely a lox roncidal fuactor from

€°? to Set.
A monoid 18 to a M\A\\:ica\tegorg whot a Monad. is to

T T
o VDC. e —t— ¢+ &+ o o=——0
| P
om0 o ‘H—

T T
For SV I VDC X, there is o VDC Mod (X)
whose objects are Monads in X, and whose
loose morphisms are birmodules [Leinster 2004].



Case .s’cuuo\j }_

: (N
The objects of the exeonentm\ VDC D are functors
C,—> D_, rather than lax functors, However, we

con obtain the lax fuactors using the intuition on the
the previous slide.

Theorem
Civen double categorie.s C and D, Paré's
vhe lox (€, D) of lax functors from € to D

'S precisely Moo\(ﬂ)‘[).



Yoneda e.M'oeMinS for double cateaories

Paré’'s motivation for introo\ucing Lax (€, D) is to

StU\dﬂ the Yoneda lemma -For double Catesories. Pavé
ex?\ici’dj Constructs an eMbedding

€ —> Lax(€°F, Span)

which takes iu‘\l:e. some work, as the VDC of
presheaves iS rather complex.

However, our characterisation in terms of exponentials
simplifies this construction substantially,



VYonedo via ‘l:romsPositiov\

normal functors € — ILax (Copt: $P°"")

opt
normal functors C — Moo\(SPaﬂc f )

opt
functors € — $Pam¢ f

functors C"x ¢ —> 3pan



\no\e.xod:ion Versws vbrotion

In category theory, one finds many correspondences
between indexed data and fibred data.

. Set™ versus Set/x .

e [€°° Set] versus DFib(6).
e Ps(€°F Cat) versus Fib(€).
It is known that something similar is true for

double categories [Paré 2011, Lambert 2021, CLPS 2022,
FM24], albeit under certain Strictness assumptions.



Presheaves and discrete fibrations

35 taking ao\\lav\tase of the observation that

lax functors are monads, we can sive o far
Simpler proof, whilst dropping unnecessary
strictness assumptions.

Fiest, the usual eguivalence between presheaves

and discrete fibrations induces an eguivalence of

VDCs

opt
Soan®™" ~  ILvwDFib(C)



Presheaves and discrete fiorations
After which applying Mod and invoking its
universal Fro?ertj Sives an eguivalence of VDCs:
1L ox (€%P* Span) =~ DFib(C)
for every double categorg €.
Furthermore, wsing the universal property of Mod:

L ox (€°FF, Span) = ILax (€, Dist)

K norrmal functors



E?i\osue



Reod. all about it

\f youwd like to learn more, you can find
(aimost) everything I've talked about, and mMuch
more, in the oreprint:

‘Exgoner\t'\able virtual double catesories
and
presheaves for double categories ’

https://arxiv.org/abs/2508.11611



https://arxiv.org/abs/2508.11611

Summar:j
. Convolution is simplified and clarified by the
consideration of rulticategories.

o Taking a similar perspective for convolution
with “mMany objects’ leads to virtual double

Categories,
o Bg stud36n3 exeone/\tiatiov\ for virtual double

Ca\tegories, We recover mMany known phenomena,

whilst SiMp\iF\jiﬂg and se,r\em\ising existing foroofs,
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Post Scr'\ef._

More 921\@1‘&\\3 than consio\ering Mmonoids in 8, we con

consider categories enriched therein, Again, the
rMulticategorical perspective simplifies the onalysis,

r‘evea\ins that é-cat.eﬂories are Pl‘ecise,|3 ﬁ-arao\ed
categories.

| ze°°
In fact, these are precisely the monads in Spoan .

opt
Conseqy\entla, mMonads$ In $9N\¢ Ma& be viewed as

categorie,s SraAaX M o double catesorﬂ...



